Algorithm AS 135: Min-Max Estimates for a Linear Multiple Regression Problem
Author(s): Ronald D. Armstrong and David S. Kung
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28, No. 1
(1979), pp. 93-100
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2346829
Accessed: 27-02-2015 13:20 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org. Wiley and Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of the Royal Statistical Society. Series C (Applied Statistics).

```
5 XB = XA
    GB}=\textrm{GA
    XA = X
        GA=GX
        GOTO 4
6T=x
    R=BT / (BT + ALPHA * AA ** BETA)
    RETURN
    END
    SUBROUTINE FNE(REX)
        ALGORITHM AS 134.3 APPL. STATIST. (1979) VOL.28, NO.1
        GENERATES EXPONENTIAL RANDIMM VARIABLES
        BY THE METHOD IIF VINN NEUMANN
    A = 0.0
    1 U = RANF(0.0)
    UO =U
2 USTAR = RANF(1.0)
    IF (U .LT. USTAR) G(YTO 3
    U = RANF(2.0)
    IF (U .IT. USTAR) GIOTU 2
    A = A + 1.0
    GGTO 1
3 REX = A + vO
    RETURN
    END
```

C
C

Algorithm AS 135

Min-Max Estimates for a Linear Multiple Regression Problem

By Ronald D. Armstrong and David S. Kung
University of Texas at Austin, Austin, Texas

Keywords: LINEAR PROGRAMMING; REGRESSION; CHEBYCHEV NORM; MIN-MAX
Language
ISO Fortran

Description and Purpose

Let $\left(x_{i 1}, x_{i 2}, \ldots, x_{i m}, y_{i}\right), i=1,2, \ldots, n$, be given. The min-max curve fitting problem is to find $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ to

$$
\begin{equation*}
\operatorname{minimize}\left(\operatorname{maximum}\left|y_{i}-\sum_{j=1}^{m} x_{i j} \beta_{j}\right|, i=1,2, \ldots, n\right) . \tag{1}
\end{equation*}
$$

Problem (1) is often termed a Chebychev or L_{∞} norm curve-fitting problem. It provides an alternative to the classical least squares analysis and may be particularly attractive if the error distribution is uniform. The reader is referred to Appa and Smith (1973) and Harter (1975) for a further disucssion of min-max properties.

It has been known for some time (see Stiefel, 1960) that (1) is equivalent to the following linear programming (LP) problem.

$$
\begin{equation*}
\text { Minimize } z \text {, subject to } y_{i}-z \leqslant \sum_{j=1}^{m} x_{i j} \beta, \leqslant y_{i}+z, \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

The computer code presented here is based on the algorithm of Armstrong and Kung (1977) which utilizes an LP dual method to solve (2). This algorithm differs from a dual method presented by Stiefel (1959) in certain important aspects. It is a revised simplex algorithm which maintains a basis of size m by m rather than $(m+1)$ by $(m+1)$. It employs an $L U$ decomposition as described by Bartels and Golub (1969) to obtain the solutions to square linear systems. The method guarantees that an observation $\left(x_{i 1}, \ldots, x_{i m}\right)$ removed from the basis at an iteration will not violate its associated constraint immediately after removal. Due to the special structure of the problem, the total number of iterations required by the standard simplex algorithm can be reduced significantly; there are times when two or more iterations may be combined into one. Also, in deciding the observation to leave the basis, the amount of computation is reduced to finding the minimum of m ratios. These lead to a significant saving in overall computational time.

Computational Result

The algorithm was tested together with the Barrodale and Phillips (1975) computer code for the Chebychev problem. The two codes were placed in a program as independent (i.e. no common blocks were present) subroutines. Several runs were made with randomly generated problems of various dimensions and the results are summarized in Table 1. The number of iterations refers to basis updates required. In terms of numerical accuracy, for the problems we solved, all objective values corresponded to ten digits. All runs were performed on a CDC 6600 with a 60 -bit word.

Table 1
A summary of computational testing with two algorithms for Chebychev curve fitting. Five problems were solved at each level and all figures are the means of the results. All times are in milliseconds on a CDC 6600

n [In each pair of rows 1st row: Time 2nd row: Iterations]	m							
	5		10		15		20	
	$B-P \dagger$	$A-K \dagger$	$B-P$	$A-K$	$B-P$	$A-K$	$B-P$	$A-K$
50	134	42	337	216	701	585	1098	1442
	13	7	22	14	34	18	42	25
100	255	105	778	400	1639	1141	2571	2316
	13	11	25	20	40	30	50	35
200	637	174	1928	634	4009	1818	6839	3743
	16	11	32	21	49	35	67	46
200	689	165	1877	660	3434	1538	6035	3927
	17	10	31	23	42	30	59	48
300	906	257	2779	891	5977	2563	10831	5369
	15	11	30	23	49	40	70	54
350	1198	287	3806	1050	7896	2826	12661	5702
	17	11	36	24	55	40	70	53

$\dagger B-P$: Barrodale and Phillips (1975). $A-K$: Algorithm from this paper.
Structure
SUBROUTINE LFNORM (N, M, NDIM, MDIM, $X, Y, B E T A, Z, K Y, I F A U L T)$
Formal parameters

N	Integer
M	Integer

input: number of observations
input: number of independent variables

NDIM	Integer
$M D I M$	Integer
X	Real array
	$(N D I M, M D I M)$
Y	Real array (NDIM)
$B E T A$	Real array (MDIM)
Z	Real
$K Y$	Integer
$I F A U L T$	Integer

input: first dimension of X and dimension of Y
input: second dimension of X, and dimension of BETA
input: values of the independent variables such that each row corresponds to an observation
input: values of the dependent variable
output: final estimates of the coefficients of the problem
output: the least maximum absolute deviation
output: the iteration counter
output: the failure indicator
$=0$ normal termination
$=1$ observation matrix of less than full rank

Restrictions

The local constants are $A C U$ and $B I G$ which have the values 10^{-8} and 10^{15} respectively. $A C U$ is used to test for optimality. Also, if the absolute value of a number is smaller than $A C U$, it will be treated as zero. $B I G$ is used as an initial value when determining the minimum ratio.

Acknowledgement

This research was supported in part by a George Kozmetsky Fellowship Grant and NSF Grant MCS77-00100.

References

Appa, G. and Smith, C. (1973). On L_{1} and Chebyshev estimation. J. Math. Programming, 5, 73-87.
Armstrong, R. D. and Kung, D. S. (1977). A dual method for discrete Chebychev curve fitting. Working Paper 78-9, The University of Texas at Austin, 23 pp.
Barrodale, L. and Phllips, C. (1975). Solution of an overdetermined system of linear equations in the Chebychev norm. ACM Transactions on Mathematical Software, 1, 264-270.
Bartels, R. G. and Golub, G. H. (1969). The simplex method of linear programming using LU decomposition. Commun. Ass. Comp. Mach., 12, 266-268.
Harter, H. L. (1975). The method of least squares and some alternatives-Part III. Int. Statist. Rev., 43, 1-44.
Stiffel, E. (1960). Note on Jordan elimination, linear programming and Tschebyscheff approximation. Numer. Math., 2, 1-17.

- (1959). Úber diskrete und lineare Tschebyscheff Approximationen. Numer. Math., 1, 1-28.

```
    SUBROUTINS LMTORM(N, M, NDIM, MDIM, X, Y, BETA, Z, KY, IFAULT)
c
c
c
C
    DIMENSION X(NDIM, MDIM), Y(NDIM), LU(20, 20), BETA(MDIM)
    DIMENSIMN HILO(20), XRXF(20), XSXF(20), IBASE(20), INDEX(20)
    REAL IU
    INTEGER SSS, RRR
    LOGICAL INTL
    DATA ACU /1.0E-8/, BIG/1.0E15/
C
    IFAULT = 0
    KY = 0
    z=0.0
    M1 = M - 1
C
    set up mattial w decomposition
```

DO $10 \mathrm{I}=1$ ， M
$10 \operatorname{INDEX}(I)=I$
INTL $=$ ．TRUE．
KKK $=1$
CALL UPDATE（KKK，$X, L \mathbb{X}$, IBASE，INDEX，INTL， ＊ $\mathrm{N}, \mathrm{M}, \mathrm{NDIM}, \mathrm{MDIM}, \mathrm{IFAULT}$ ）
IF（IFAULT ．NE。O）RETURN
INTL $=$ 。FALSE。
IROW $=$ KKI
C
C
Calculate beta value
$\mathrm{K}=\mathrm{INDEX}(1)$
$\mathrm{K} 1=\operatorname{IBASE}(1)$
$\operatorname{BETA}(\mathrm{K})=\mathrm{Y}(\mathrm{K} 1) / \mathrm{WH}(\mathrm{K}, 1)$
DO 30 II $=2, \mathrm{M}$
$K=\operatorname{INDEX}(I I)$
$K 1=\operatorname{IBASE}(I I)$
$\operatorname{BETA}(\mathrm{K})=\mathrm{Y}(\mathrm{K} 1)$
$I I 1=I I-1$
DO $20 \mathrm{I}=1$ ，III
$\mathrm{KK}=\operatorname{INDEX}(\mathrm{I})$
$\operatorname{BETA}(K)=\operatorname{BETA}(K)-W(K K, I I) * \operatorname{BETA}(K K)$
20 CONTINUE
$\operatorname{BETA}(K)=\operatorname{BETA}(K) / L U(K, I I)$
30 CONTINUE
DO $40 \mathrm{II}=1$ ，M1
$K 1=M-I I$
$K=\operatorname{INDEX}(K 1)$
DO $40 \mathrm{I}=1$ ，II
$\mathrm{KK}=\mathrm{M}-\mathrm{I}+1$
$K 2=\operatorname{INDEX}(K K)$.
$\operatorname{BETA}(K)=\operatorname{BETA}(K)-L U(K 2, K 1) * \operatorname{BETA}(K 2)$
40 COntinus

50 IROW $=$ IRTJN +1
IF（IRTM ．GT．N）RITTURN
DEV1 $=0.0$
DO $60 \mathrm{I}=1$ ，M
60 DEV $1=$ DEV $1+X$（IROH，I）$* \operatorname{BETA}(I)$
DEV1 $=$ DRV1 $-\mathrm{Y}($ IRDW $)$
IF（ABS（DEV1）．LTT．ACU）GCTO 50
SIGR $=\operatorname{SIGN}(1.0, \operatorname{DEV} 1)$
RRR $=$ IRITY
C
C ADJUST FOR TIIE RTH CONSTRAINT
C
$K=\operatorname{INDEX}(1)$
$\operatorname{XRXF}(1)=x(R R R, K)$
DO 80 II $=2, M$
$\mathrm{K}=\mathrm{INDEX}(I I)$
$\operatorname{XRXF}(I I)=X(R R R, K)$
III $=I I-1$
DO $70 \mathrm{I}=1$ ，II1
$70 \operatorname{XRXF}(I I)=\operatorname{XRNF}(I I)-L U(K, I) * \operatorname{XRXF}(I)$
80 CONTINUE
$K=\operatorname{INDEX}(M)$
$\operatorname{XRXF}(M)=\operatorname{XRXF}(M) / L U(K, M)$
$\operatorname{HILO}(M)=\operatorname{SIGN}(1.0,-\operatorname{SIGR} * \operatorname{XRXF}(M))$
SUMXR $=S I G R-\operatorname{HILO}(M) * \operatorname{XRXF}(M)$
DO $100 \mathrm{II}=1$ ， M 1
$\mathrm{KI}=\mathrm{M}-\mathrm{II}$
$\mathrm{K}=\operatorname{INDEX}(\mathrm{K} 1)$
DO ŋO I＝1，II
$\mathrm{K} 2=\mathrm{M}-\mathrm{I}+1$
$\operatorname{XRXF}(K 1)=\operatorname{XRXF}(K 1)-L U(K, K 2) * \operatorname{XRXF}(K 2)$
90 CONTINUS
$\operatorname{XRXF}(K 1)=\operatorname{XRXF}(K 1) / L U(K, K 1)$
HILO（K1）$=\operatorname{SIGN}(1.0,-\operatorname{SIGR} * \operatorname{XRXF}(K 1))$
SUMXR $=$ SUMER $-\operatorname{HILO}(K 1) * \operatorname{XRXF}(K 1)$

```
    100 Contrinus
        z = ABS(DEV1 / SUMXR)
C
C Start of main iterative loop.
C search for the loost violated sth constraint
C
    1 1 0 ~ S S S ~ = ~ 0 ~
        DEvIAT = ACU
C
c calculate beta value
C
        K = INDEX(1)
        K1 = IBASE(1)
        BETA(K) = (Y(K1) + Z * HILD(1)) / LU(K, 1)
        DO 130 II =2,M
        K = INDEX(II)
        K1 = Ibase(II)
        BETA(K) = Y(K1) + Z * HILO(II)
        III = II - 1
        DO 120 I = 1, III
        KK = INDEX(I)
        BETA(K)= BETA(K) - LW(KK, II) * BETA(KK)
        120 CONTINJE
        BETA(K) = BETA(K) / LU(K, II)
        130 COnTINUS
            DO 140 II = 1, M1
            K1 = M - II
            K = IMDEX (K1)
            DJ 140 I = 1, II
            KK=M-I +1
            K2 = INDEX(KK)
            BETA(K) = BETA(K) - LU(K2, K1) * BETA(K2)
        140 CONTINUS
C
c caiculate residuals
C
            mo 160 I = 1,N
            YEST =0.0
            D() 150 J = 1, M
        150 YEST = YEST + X(I, J) * BETA(J)
            DEV1 = ABS(Y(I) - YRST) - Z
            if (devi .le. deviat) goto 160
            YDEV = YEST - Y(I)
            DEVIAT = DEVI
            SSS = I
    160 CONTINUE
C
            ChECK if AT OPTIMAL
            IF (SSS .EQ. O RETURN
C
C SET up information on the s-th constraint
C
    SIGS = SIGN(1.0, YDEV)
    K = INDEX(1)
    XSXF(1) = X (SGS, K)
    DO 180 II = 2,M
    K = INDEX(II)
    XSXF(II) == X(SSS, K)
    II1 = II - 1
    DO 170 I = 1, II1
    170 XSXF(II) = XSKF(II) - LU(K, I) * XSXF(I)
    180 contmuse
    K}=\operatorname{INDEX(M)
    XSXF(K) = XSXF(M) / LU(K,M)
    SUNAS = -SIGS + HIL_S(M) * XSAF(M)
    DC 200 II = 1, M1
    K1 = M - II
    K = INDEX(K1)
    m 190 I = 1, II
    K2 = M - I + 1
    XSXI(K1) = XSKF(K1) - LIN(K, K2) * XSXF(K2)
```

```
    1go continue
        XSXF(K1) = XSXF(K1) / LU(K, K1)
        SUMXS = SUMXS + HILO(K1) * XSXF(K1)
    200 CONTINUE
c
C SEARCH FOR MINIMUM RATIO
    210 KKK = 0
        RATIO = BIG
        DO 220 I = 1, M
        IF (SIGS * SIGN(1.0, XSXF(I)) .NE. HILD(I) .OR.
        * ABS(XSXF(I)) .LT. ACU) GOTO 22O
        TEST = ABS(XRXF(I) / XSXF(I))
        IF (TEST .GE. RATIO) GOTO 220
        RATIO = TEST
        KKK = I
    220 Cantinus
c
C CHECK IF R-TH CONSTRAINT MOVES INTERIOR
    IF (KKK .NE. O) GOTO 260
c
c
        process the mOvement of the r-TH CONSTRAINT
    DELTA = ABS(DEVIAT / SUMXS)
C
C Calculate the largest tolerable delta
C
    DIV = ABS(SUMXR) - 2.0
    IF (DIV .IT. ACU) GOTO 240
    SWING = 2.0 * Z / DIV
    IF (SWING .GE. DELTA) GOTO 24O
C
C SWITCH R AND S CQNSTRAINT INDICATORS
C
    SAVE = SUMXS
    SUMXS = -SUMXR + SIGR + SIGR
    SUMXR = -SAVE
    SAVE = SIGR
    SIGR = SIGS
    SIGS = -SAVE
    DEVIAT = ABS(SUMXS * DELTA) - 2.0 * Z
    Z = Z + DElta
    DO 230 I = 1, M
    SAVE = XSXF(I)
    XSXF(I) = XRXF(I)
    XRXF(I) = SAVE
    230 CONTINUS
    I = RRR
    RRR=SSS
    SSS = I
    GOTO 210
C
C REPLACE THE R-TH CONSTRAINT WITH THE S-TH CONSTRAINT
240 SIGR = SIGS
    DO 250 I = 1,M
250 XRXF(I) = XSXF(I)
    SUMXR = -SUMXS
    Z = Z + DELITA
    RRR = SSS
    GOTO 110
C
- 260 DELTA = ABS(XRXF(KKK) * DEVIAT /
    * (XRXF(KKK) * SUMXS + XSXF(KKK) * SUMXXR))
        TOP = -2.0* Z * XRXF(KKK)
        DIV = XRXF(KKK) * XRXF(KKKK) + HILO(KKK) * SUMXR
        IF (SIGN(1.0, TUP) .NE..SIGN(1.0, DIV)) GOTO 270
        IF.(ABS(DIV) .IT. ACU) GOTO 270
        SWING = TOP / DIV
```

```
        IF (SWING .GE. DELTA) GOTO 270
        z=Z + SWING
        DEVIAT = DEVIAT - SWING *
        * ABS(SUMKS + XSXF(KKK) * SUMXR / XRXF(KKK))
        SUMXR = SUMXR + 2.0 * HILO(KKK) * XRXF(KKK)
        SUMXS = SUMXS - 2.0 * HILO(KKK) * XSXF(KKK)
        HILO(KKK) = -HILO(KKK)
        GOTO 210
```

c
c
UPDATE XRXF AND THE LU OF THE CURRENT BASIS
270 HIIO(KKK) $=$ SIGS
SUNXR $=$ SIGR
$\operatorname{XRXF}(\mathrm{KKK})=\operatorname{XRXF}(\mathrm{KKK}) / \mathrm{XSXF}(\mathrm{KKK})$
SUMXR $=$ SUMXR $-\mathrm{HILD}(\mathrm{KKK}) * \operatorname{XRXF}(\mathrm{KKK})$
D $280 \mathrm{I}=1$, M
TF (I .EQ. KKK) GOTO 280
$\operatorname{XRXF}(\mathrm{I})=\operatorname{XRXF}(\mathrm{I})-\operatorname{XSXF}(\mathrm{I}) * \operatorname{XRXF}(\mathrm{KKK})$
SUMXR $=$ SUNXR $-\operatorname{HILD}(\mathrm{I}) * \operatorname{XRXF}(\mathrm{I})$
280 CONTINUE
$\operatorname{IBASE}(\mathrm{KKK})=\mathrm{SSS}$
c
UPDATE LU DECOMPOSItion

\mathbf{c}
\mathbf{c}

C
CALL UPDATE (KKK, X, LW, IBASE, INDEX, INTI,
* N, M, NDIM, MDIM, IFAULT)
IF (IFAULT .NE. O) RETURN
$\mathrm{Z}=\mathrm{Z}+$ DELTA
$\mathrm{KY}=\mathrm{KY}+1$
GOTO 110
RETURN
END
C
sUbroutine update (kKk, X, $\mathbf{~ w , ~ I b A S E , ~ I N D E X , ~ I N T L , ~}$
* N, M, NDIM, MDIM, IFAULT)
ALGORITHM AS 135.1 APPL. STATIST. (1979) VOL. 28 , NO. 1
UPDATE LU DECOMPOSITION MATRIX
DIMENSION X(NDIM, KDIM), $\omega \mathbf{L}(20,20), \operatorname{IBASE}(20)$, INDEX(20)
real Id
LOGICAL INTL
DATA ACU /1.0E-8/
c
IROM $=0$
DO 9O II $=\mathrm{KKK}, \mathrm{M}$
IF (INTL) GOTO 10
IROW $=$ IBASE(II)
GOTO 20
10 IROW $=$ IRKW +1
IF (IRON .LE.N) GOTO 20
IFAULT $=1$
RETURN
20 DO $30 \mathrm{I}=1$, M
$30 \mathrm{LJ}(\mathrm{I}, \mathrm{II})=\mathrm{X}$ (IRONT, I)
c
SET UP REPRESENTATICN OF incoming ROW
IF (II .EQ. 1) Goro 60
III = II - 1
DO 50 ICOL $=1$, III
$\mathrm{K}=\mathrm{INDEX}$ (ICOL)
$\operatorname{SUBT}=\mathrm{LJ}(\mathrm{K}, \mathrm{II})$
$J=$ ICOL +1
DO $40 \mathrm{I}=\mathrm{J}, \mathrm{x}$
$\mathrm{K}=\operatorname{INDEX}(\mathrm{I})$
$\operatorname{LU}(\mathrm{K}, \mathrm{II})=\mathrm{LU}(\mathrm{K}, \mathrm{II})-\mathrm{SUBT} * \mathrm{LU}(\mathrm{K}, \mathrm{ICOL})$
40 Continue
50 CONTINUE

C FIND MAXIMUM IENTRY
C
60 PIVOT $=A C U$
$\mathrm{KK}=0$
D $70 \mathrm{I}=\mathrm{II}, \mathrm{M}$
$K=\operatorname{INDEX}(I)$
IF (ABS (LU‘K, II)) .IE. PIVOT) GOTO 70
PIVOT $=\operatorname{ABS}(L J(K, I I))$
$K K=I$
70 CONTINUS
IF (KK .ER. O) GOTH 10
C
C SWITCH ORDER

ISAVE $=$ INDEX(KK)
INDEX (KK) $=$ INDEX(II)
$\operatorname{INDEX}(I I)=$ ISAVE
C
put in columns or lu one at a time
IF (INTL) IBASE (II) $=$ IRON
IF (II .ER. M) GOTO OO
$J=I I+1$
DO $80 \mathrm{I}=\mathrm{J}, \mathrm{M}$
$\mathrm{K}=\mathrm{INDEX}(\mathrm{I})$
$\omega U(K, I I)=\omega(K, I I) / L U(I S A V E, I I)$
80 CONTINUE
90 CONTINUE
KKK $=$ IROW
RETURN
END

Algorithm AS 136

A K-Means Clustering Algorithm

By J. A. Hartigan and M. A. Wong

Yale University, New Haven, Connecticut, U.S.A.
Keywords: K-means clustering algorithm; transfer algorithm
LANGUAGE
ISO Fortran

Description and Purpose

The K-means clustering algorithm is described in detail by Hartigan (1975). An efficient version of the algorithm is presented here.

The aim of the K-means algorithm is to divide M points in N dimensions into K clusters so that the within-cluster sum of squares is minimized. It is not practical to require that the solution has minimal sum of squares against all partitions, except when M, N are small and $K=2$. We seek instead "local" optima, solutions such that no movement of a point from one cluster to another will reduce the within-cluster sum of squares.

Method

The algorithm requires as input a matrix of M points in N dimensions and a matrix of K initial cluster centres in N dimensions. The number of points in cluster L is denoted by $N C(L) . D(I, L)$ is the Euclidean distance between point I and cluster L. The general procedure is to search for a K-partition with locally optimal within-cluster sum of squares by moving points from one cluster to another.

