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5XB = XA 

GB = GA 
XA = X 
GA = GX 
GOTO 4 

C 
C CALCULATE REMAININIG CONSTANTS 
C 

6 T = X 
R - B- / (BT + AWlIA * AA ** BETA) 
RETURNI 
END 

C 
SUBROUTINE FNE(REX) 

C 
C ALGORITWM AS 134.3 APPL. STATIST. (1979Q VOL.28, NO.1 
C 
C GENERATES EXPONENTIAL RANDtOM VARIABLES 
C BY THE METHOD uF V(N NEUtANN 
C 

A = 0.0 
1 U = RtANF(O.ON 

UO = U 
2 USTAR = RANF(1.OO 

IF (U .LT. USTAjR) GOTO 3 
U = RJNF(2.oN 
IF (U .LT. USTAR) GOTO 2 
A = A + 1.0 
GOTO 1 

3 REX = A + UO 
RETURN 
END 

Algorithm AS 135 

Min-Max Estimates for a Linear Multiple Regression Problem 

By RONALD D. ARMSTRONG and DAVID S. KUNG 

University of Texas at Austin, Austin, Texas 

Keywords: LINEAR PROGRAMMING; REGRESSION; CHEBYCHEV NORM; MIN-MAX 

LANGUAGE 

ISO Fortran 

DESCRIPTION AND PURPOSE 
Let (xi., Xi2, ..., Xim, y), i = 1,2,..., n, be given. The min-max curve fitting problem is to 

find P = (Pl8 P2. .Pm) to 

minimize (maximum y -YE x,B Pi ,= 1, 2,. (1) 

Problem (1) is often termed a Chebychev or Lo,o norm curve-fitting problem. It provides an 
alternative to the classical least squares analysis and may be particularly attractive if the error 
distribution is uniform. The reader is referred to Appa and Smith (1973) and Harter (1975) 
for a further disucssion of min-max properties. 

It has been known for some time (see Stiefel, 1960) that (1) is equivalent to the following 
linear programming (LP) problem. 

m 
Minimize z, subject to yi-z K , xi <, y,+ z, i = 1, 2, ..., n. (2) 

1=1 
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94 APPLIED STATISTICS 

The computer code presented here is based on the algorithm of Armstrong and Kung 
(1977) which utilizes an LP dual method to solve (2). This algorithm differs from a dual method 
presented by Stiefel (1959) in certain important aspects. It is a revised simplex algorithm 
which maintains a basis of size m by m rather than (m +1) by (m + 1). It employs an LU 
decomposition as described by Bartels and Golub (1969) to obtain the solutions to square 
linear systems. The method guarantees that an observation (xil, ..., xi.) removed from the 
basis at an iteration will not violate its associated constraint immediately after removal. 
Due to the special structure of the problem, the total number of iterations required by the 
standard simplex algorithm can be reduced significantly; there are times when two or more 
iterations may be combined into one. Also, in deciding the observation to leave the basis, 
the amount of computation is reduced to finding the minimum of m ratios. These lead to a 
significant saving in overall computational time. 

COMPUTATIONAL RESULT 

The algorithm was tested together with the Barrodale and Phillips (1975) computer code 
for the Chebychev problem. The two codes were placed in a program as independent (i.e. no 
common blocks were present) subroutines. Several runs were made with randomly generated 
problems of various dimensions and the results are summarized in Table 1. The number of 
iterations refers to basis updates required. In terms of numerical accuracy, for the problems 
we solved, all objective values corresponded to ten digits. All runs were performed on a 
CDC 6600 with a 60-bit word. 

TABLE 1 

A summary of computational testing with two algorithms for Chebychev curve fitting. Five 
problems were solved at each level and allfigures are the means of the results. All times are in 

milliseconds on a CDC 6600 

n m 
[In each pair 

of rows 5 10 15 20 
1st row: Time 

2nd row: Iterationis] B-Pt A-Kt B-P A-K B-P A-K B-P A-K 

50 134 42 337 216 701 585 1098 1442 
13 7 22 14 34 18 42 25 

100 255 105 778 400 1639 1141 2571 2316 
13 11 25 20 40 30 50 35 

200 637 174 1928 634 4009 1818 6839 3743 
16 11 32 21 49 35 67 46 

200 689 165 1877 660 3434 1538 6035 3927 
17 10 31 23 42 30 59 48 

300 906 257 2779 891 5977 2563 10831 5369 
15 11 30 23 49 40 70 54 

350 1198 287 3806 1050 7896 2826 12661 5702 
17 11 36 24 55 40 70 53 

t B-P: Barrodale and Phillips (1975). A-K: Algorithm from this paper. 

STRUCTURE 

SUBROUTINE LFNORM (N, M, NDIM, MDIM, X, Y, BETA, Z, KY, IFA ULT) 

Formal parameters 
N Integer input: number of observations 
M Integer input: number of independent variables 
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NDIM Integer input: first dimension of X and dimension of Y 
MDIM Integer input: second dimension of X, and dimension of BETA 
X Real array input: values of the independent variables such that each 

(NDIM, MDIM) row corresponds to an observation 
Y Real array (NDIM) input: values of the dependent variable 
BETA Real array (MDIM) output: final estimates of the coefficients of the problem 
Z Real output: the least maximum absolute deviation 
KY Integer output: the iteration counter 
IFA ULT Integer output: the failure indicator 

= 0 normal termination 
= 1 observation matrix of less than full rank 

RESTRICTIONS 
The local constants are ACU and BIG which have the values 10-8 and 105 respectively. 

ACU is used to test for optimality. Also, if the absolute value of a number is smaller than 
ACU, it will be treated as zero. BIG is used as an initial value when determining the minimum 
ratio. 
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SUBROUTINE LFn;RM(N, M, NDIM, MDIM, X, Y, BETA, Z, KY, IFAULT) 
C 
C AUXRITIIM AS 135 APPL. STATIST. (1979) VOL.28, N0.1 
C 
C MIN-MAX ESTIMATES FOR A LINEAR MULTIPLE REGRESSION PRCBLEM 
C 

DIMENSION X(NDIM, MDIM), Y(NDIM), LU(20, 20), BETA(DIM) 
DIMENSIOXN IIL(20), XRXF(20), XSXF(20), IBASE(20), INDEX(20) 
REAL LU 
INTEGER SSS, ER 
LOGXICAL INTL 

C 
DATA ACU /1.OE-8/, BIG /l.OE15/ 

C 
IFAULT 0 0 
KY = 0 
Z = 0.0 
XM =4 - I- 

C 
C SET UP INJITIAL LU DECOMOITION 
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96 APPLIED STATISTICS 
c 

DO 10 I = 1, M 
.10 INDEX(I> = I 

INTL = TRUE. 
EKEI = 1 
CALL UPDATE(KEK, X, LU, IBASE, INDEX, INTL, 

* N, M, NDIM, MD Ii, IFAULT) 
IF (IFAULT NE, 0) RETURN 
INTL = FALSE. 
IROW = EKIE 

C 
C CALCULATE BETA VALUE 
C 

C - INDEX(1) 
XI = IBASE(1) 
BETA(0) = Y(K1) / U(K, 1) 
DO 30 II = 2, M 
K - INDEX(II) 
K1 IBASE(II) 
BETA(K) = Y(OC) 
III = II - 1 
DO 20 I = 1, IIl 
KK = INDEX(I) 
BETA(W = BETA(K) - U(KK, II) * BETA(KK) 

20 CONTITUE 
BETA(KX = BETA(K) / LU(K, II) 

30 CONTINUE 
DO 40 II = 1, Ml 
K1 - M - II 
K - INDEX(K1! 
DO 40 I = 1, II 
KK = M - I + 1 
K2 = INDEX(KE). 
BETA(K} = BETA(K) - W(K2, XI) * BETA(1(2) 

40 CONTIlUE 
C 
C SEARCH FOR AND SET FIRST VIOLATED 
C CONISTRAINT AS RTI! CONSTRAINT 
C 

50 IROW = IRON + 1 
IF (IRMn .GT. N) RETURN 
'DEV1 = 0.0 
DO bo I = 1, M 

6o DEVI = DEVI + X(IROWY, I) * BETA(Il 
DEVI DEVI - Y(IROW) 
IF (ABS(DEV1) .LT. ACU) GOTO 50 
SIGR = SIGN(.10, DEVi) 
MRR = IRNY 

C 
C ADJUST FOR THE RTIH CONSTRAINT 
C 

K = ItIDEX(1) 
XRXF(1M X(RRR, IC) 
DO 80 II 2, M 
K = INDEX(II) 
XRXF(IM - X(RRRf K) 
II1 - II - 1 
DO 70 I 1, IIl 

70 XRXF(II N XWXF(II) - LU(K, I) * XRXF(I) 
80 CONTINUE 

K = INDEX(M) 
XRXF(M) = XRXF(M) / LU(E, M) 
HILO(M = SIGN(1.0, -SIGR * XRXF(M)) 
SUMXR = SIGR - HIW(M) * XRXF(M) 
DO 100 II = 1, Ml 
El - M - II 
K INDEX01Cl) 
DO] go I = 1, I I 
K2 = M - I + 1 
XR'FJ,(K1) = XREF(KE) - LU(, 2) * XRXF(K2) 

90 CONTINUE 
XR,XF(JCI) = XRXF(E) / LU(E, El) 
HILDO(Kl = SIGN(l,0, -SIGR * XRXF(K1)) 
SUMXR = SUMXR -IL(Kl) * XRF(K1) 
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100 CONTINUEr 
z = ABS(DEV1 / SUMXRI 

C 
C START OF MAIN ITERATIVE LOOP. 
C SEARCI FOR TLE MOST VIOLATED STH CONSTRAINT 
C 

110 SSS = 0 
DEVIAT = ACU 

C 
C CALCUlATE BETA VALUE 
C 

K - INDEX(l1 
K1 = IBASEM(1 
BETA(K) = (Y(K1I + Z * HI(1) / LU(K, 11 
DO 130 II = 2, 1 
K = INDEX(IIN 
RI - IBASE(III 
BETA(K0 = Y(K1) + Z * H1I(Ill 
II1 - II - 1 
DO] 120 I - 1, III 
KK = INDEX(IN 
BETA(KN = BETA(K IW(KEK II! BETA(K) 

120 CONTIN1E 
BETA(K) = BETACK) / LU(Ko II) 

130 COTINUE 
DO 140 II = 1, Ml 
Rl - M - II 
K INDEX (Kl) 
DO 140 I = 1, II 
KK = M - I + 1 
K2 = INDEXIO( C 
BETA(K) = BETA(K) - LU(12, El) * BETA(K2) 

140 CONTINUE 
C 
C CALCUlATE RESIDUALS 
C 

DO i6o I = 1, N 
YEST = 0.0 
DT] 150 J = 1, M 

150 YEST = YEST + X(I, JI * BETA(J) 
DEVI = ABS(Y(I) - YEST) - Z 
IF (DEVI .LE. DEVIAT) GaTo 160 
YDEV = YEST Y(Il 
DEVIAT = DEV1 
SSS = I 

i6o CONTINUE 
C 
C CHECK, IF AT OPTIMAL 
C 

IF (SSS SEQ. 0 RETURN 
C 
c SET UP INFORMATION ON TIE S-TH CONSTRAIN? 
C 

SIGS = SIGN(l.eO YDEV) 
K = INJDEX (1) 
XSXF(1l = X(SSS, I; 
Do 180 II = 2, 1M 
K = INDEX(II) 
XSXF(II) -- ,(SSS, K1) 
II1 _ II - 1 
DO 170 1 1, ITI 

170 XSXF(II) Xs"F(II) - LUCK, I) *' XSXF(I) 
180 CONUiEin 

K = INDEX(M) 
XSXF(mt = XSXF(M) / LU(K, M) 
SUmESS -SIGS + IILJ)(MI * XSXF(M) 
DO 200 II = 1, Ml 
K1 - M - II 
K - INDEX(Kl) 
DO 190 I t 1, II 
K2 - H - I + 1 
XSXF(Kl) _ X.XF(KIl) - LU(K, K2) * XSXF(K2) 
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98 APPLIED STATISTICS 
190 CONTINUE 

XSXF(K1) = XSXF(K1) / LU(K, Ki) 
SUMXS = SUMXS + HILO(K1) * XSXF(K1) 

200 CONTINUE 
C 
C SEARCH FOR MINIMUM RATIO 
C 

210 lOK = 0 
RATIO = BIG 
DO 220 I 1, M 
IF (SIGS * SIGN(l.O, XSXF(I)) .NE. HILO(I) .OR. 

* ABS(XSXF(I)) .LT. ACU) GOTO 220 
TEST = ABS(XRXF(I) / XSXF(I)) 
IF (TEST .GE. RATIO) GOTO 220 
RATIO = TEST 
KKK = I 

220 CONTINUE 
C 
C CHECK IF R-TH CONSTRAINT MOVES INTERIMO 
C 

IF (KKK .NE. 0) om 260 
C 
C PROCESS THE MOEMENT OF TEE R-TH CONSTRAINT 
C 

DELTA = ABS(DEVIAT / SUMES) 
C 
C CALCUIATE THE LARGEST TOLEALE DELTA 
C 

DIV = ABS(SUMXR) - 2.0 
IF (DIV .LT. ACU) GOrO 240 
SWING = 2.0 * Z / DIV 
IF (SWING .GE. DELTA) GOTO 240 

C 
C SWITCH R AND S CONSTRAINT INDICATORS 
C 

SAVE = SUMXS 
SUMXS = -SUMXR + SIGR + SIGR 
SUMXR -SAVE 
SAVE = SIGR 
SIGR = SIGS 
SIGS = -SAVE 
DEVIAT = ABS(SUMXS * DELTA) - 2.0 * Z 
Z = Z + DELTA 
DO 230 I = 1, M 
SAVE = XSXF(I) 
XSXF(I) = XRXF(I) 
XRXF(I) = SAVE 

230 CONTINUE 
I = RBR 
RRR = SSS 
SSS = I 
GCYO 210 

c 
c REPLACE THE R-TH CONSTRAINT WITH THE S-TM CONSTRAINT 
c 

240 SIGR = SIGS 
DO 250 I = 1, M 

250 XRXF(I) = XSXF(I) 
SUMXR = -SUMXS 
z = z + DELTA 
RRR = SSS 
GOTO 110 

C 
C PROCESS THE MOVEMENT OF THE K-TH CONSTRAINT 
C 

2z60 DELTA = ABS(XRxF(KKK) * DEvIAT / 
* (XRXF(KKK) * SUMXS. + XSXF(KKK) * SUMX1R)) 
TOP = -2.0,* Z * XRXF(KKK) 
DIV = XRXF(KKK) * XRXF(KKK) + HIL0(K) * SUMXR 
IF (SIGN(l.0, TOP) .NE. SIGN(l.0, DIV)) GOTO 270 
IF.(ABS(DIV) .LT. ACU) GOrO 270 
SWING = TOP / DIt 
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CHECK TO SEE IF THE K-TH CONSTRAINT SWINGS ACROSS 
C 

IF (SWING .GE, DELTA) GOTO 270 
Z = Z + SWING 
DEVIAT = DEVIAT - SWING * 

* ABS(SUMXS + XSXF(KKK) * SUMR / XRXF(KKK)) 
SUMXR = SUMXR + 2.0 * HILO(KKK) * XRXF(KKK) 
SUMXS = SUMXS - 2.0 * HIL(KKK) * XSXE(K) 
HILO(KKK) = -HILO(KKK) 
GOTM 210 

C 
C UPDATE XRXF AND THE LU OF THE CURRENT BASIS 
C 

270 HIM(K) = SIGS 
SUMXR = SIGR 
XRXF(KKK) = XRXF(KKK) / XSXF(KKK) 
SUMXR = SUMXR - HILO() XRXF(KKK) 
DO 280 I = 1, M 
IF (I .EQ. KKK) GaO 280 
XRXF(I) = XRXF(I) - XSXF(I) * XRXF(KKK) 
SUM = SUMXR - HILU(I) * XRXF(I) 

28o CONTINuE 
IBASE(KKK) = SSS 

C 
C UPDATE LU DECOMPOSITION 
C 

CALL UPDATE(KKK, X, UT, IBASE, INDEX, INTL, 
* N, M, NDIM, MDIM, IFAULT) 
IF (IFAULT .NE. 0) RETURN 
Z = Z + DELTA 
KY = KY + 1 
GaOT 110 
RErURN 
END 

C 
SUBROUTINE UPDATE(K, X, L, IBASE, INDEX, INTL, 

* N, M, NDIM, MDIM, IFAULT) 
C 
C ALGORITHM AS 135.1 APPL. STATIST. (1979) VOL.28, No.1. 

C UPDATE LU DECOMPOSITION MATRIX 
C 

DIMENSION X(NDIM, MDIM), L(20, 20), IBASE(20), INDEX(20) 
REAL LU 
LOGICAL INTL 
DATA ACU /1.OE-8/ 

C 
IRON = 0 
DO 90 II = KKK, X 
IF (INTL) GOtO 10 
IROW = IBASE(II) 
GOTFO 20 

10 IRON = IRON + 1 
IF (IROW . LE. N) GarO 20 
IFAULT = 1 
RETURN 

20 DO 30 I = 1, N 
30 W(I, II) X(IRON, I) 

C 
C SET UP REPRESENTATICN OF INCOMING ROW 
C 

IF (II .EQ. 1) GmoToO 
III = II - 1 
DO 50 ICOL = 1, II1 
K = INDEX(ICOL) 
SUBT = LU(K, II) 
J = ICOL + 1 
DO 40 I = J, M 
X = INDEX(I) 
JU(K, II) = WU(K, II). - SUBT * LU(K, ICOL) 

40 CONTINUE 
50 CONTINuE 
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C FIND WIMUM ENTRY 
C 

6o PIvcr = ,xC 
KK = 0 
DO 70 I = II, s 
K = INDEX(I) 
IF (ABS(LU(IC, IIl .LE. PIVOT) GOTO 70 
PIVOT = ABS(W(K, IIM 
KK I 

70 CONTIlUE 
IF (IE *EQ. 0) GOTO 10 

C 
c SWITCH ORDER 
C 

ISAVE = INDEX(ltK) 
INDMEX(KiC) = INDEX('II 
INDEX(II) = ISAVE 

C 
C PUT IN COUJimS or LU ONE AT A TIME 
C 

IF (INTIA IIBASE(II) IR 
IF (II *EQ. MN GOTO 90 
J = II + 1 
ix) 80 I = it M 
K = INDEXVI) 
LU(E, II) = W(E, II / LU(ISAVE, II) 

80 CONTINUE 
90 CCNTINUE 

EKE = IRCW 
RETURN 
END 

Algorithm AS 136 

A K-Means Clustering Algorithm 

By J. A. HARTIGAN and M. A. WONG 

Yale University, New Haven, Connecticut, U.S.A. 

Keywords: K-MEANS CLUSTERING ALGORITHM; TRANSFER ALGORITHM 

LANGUAGE 

ISO Fortran 

DESCRIPTION AND PURPOSE 

The K-means clustering algorithm is described in detail by Hartigan (1975). An efficient 
version of the algorithm is presented here. 

The aim of the K-means algorithm is to divide M points in N dimensions into K clusters 
so that the within-cluster sum of squares is minimized. It is not practical to require that the 
solution has minimal sum of squares against all partitions, except when M, N are small and 
K = 2. We seek instead "local" optima, solutions such that no movement of a point from one 
cluster to another will reduce the within-cluster sum of squares. 

METHOD 

The algorithm requires as input a matrix of M points in N dimensions and a matrix of 
K initial cluster centres in N dimensions. The number of points in cluster L is denoted by 
NC(L). D(I, L) is the Euclidean distance between point I and cluster L. The general procedure 
is to search for a K-partition with locally optimal within-cluster sum of squares by moving 
points from one cluster to another. 
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