
 Wiley and Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of the
Royal Statistical Society. Series C (Applied Statistics).

http://www.jstor.org

Algorithm AS 135: Min-Max Estimates for a Linear Multiple Regression Problem
Author(s): Ronald D. Armstrong and David S. Kung
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28, No. 1

 (1979), pp. 93-100
Published by: for the Wiley Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2346829
Accessed: 27-02-2015 13:20 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
 http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship.
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=black
http://www.jstor.org/action/showPublisher?publisherCode=rss
http://www.jstor.org/stable/2346829
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

STATISTICAL ALGORITHMS 93
5XB = XA

GB = GA
XA = X
GA = GX
GOTO 4

C
C CALCULATE REMAININIG CONSTANTS
C

6 T = X
R - B- / (BT + AWlIA * AA ** BETA)
RETURNI
END

C
SUBROUTINE FNE(REX)

C
C ALGORITWM AS 134.3 APPL. STATIST. (1979Q VOL.28, NO.1
C
C GENERATES EXPONENTIAL RANDtOM VARIABLES
C BY THE METHOD uF V(N NEUtANN
C

A = 0.0
1 U = RtANF(O.ON

UO = U
2 USTAR = RANF(1.OO

IF (U .LT. USTAjR) GOTO 3
U = RJNF(2.oN
IF (U .LT. USTAR) GOTO 2
A = A + 1.0
GOTO 1

3 REX = A + UO
RETURN
END

Algorithm AS 135

Min-Max Estimates for a Linear Multiple Regression Problem

By RONALD D. ARMSTRONG and DAVID S. KUNG

University of Texas at Austin, Austin, Texas

Keywords: LINEAR PROGRAMMING; REGRESSION; CHEBYCHEV NORM; MIN-MAX

LANGUAGE

ISO Fortran

DESCRIPTION AND PURPOSE
Let (xi., Xi2, ..., Xim, y), i = 1,2,..., n, be given. The min-max curve fitting problem is to

find P = (Pl8 P2. .Pm) to

minimize (maximum y -YE x,B Pi ,= 1, 2,. (1)

Problem (1) is often termed a Chebychev or Lo,o norm curve-fitting problem. It provides an
alternative to the classical least squares analysis and may be particularly attractive if the error
distribution is uniform. The reader is referred to Appa and Smith (1973) and Harter (1975)
for a further disucssion of min-max properties.

It has been known for some time (see Stiefel, 1960) that (1) is equivalent to the following
linear programming (LP) problem.

m
Minimize z, subject to yi-z K , xi <, y,+ z, i = 1, 2, ..., n. (2)

1=1

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

94 APPLIED STATISTICS

The computer code presented here is based on the algorithm of Armstrong and Kung
(1977) which utilizes an LP dual method to solve (2). This algorithm differs from a dual method
presented by Stiefel (1959) in certain important aspects. It is a revised simplex algorithm
which maintains a basis of size m by m rather than (m +1) by (m + 1). It employs an LU
decomposition as described by Bartels and Golub (1969) to obtain the solutions to square
linear systems. The method guarantees that an observation (xil, ..., xi.) removed from the
basis at an iteration will not violate its associated constraint immediately after removal.
Due to the special structure of the problem, the total number of iterations required by the
standard simplex algorithm can be reduced significantly; there are times when two or more
iterations may be combined into one. Also, in deciding the observation to leave the basis,
the amount of computation is reduced to finding the minimum of m ratios. These lead to a
significant saving in overall computational time.

COMPUTATIONAL RESULT

The algorithm was tested together with the Barrodale and Phillips (1975) computer code
for the Chebychev problem. The two codes were placed in a program as independent (i.e. no
common blocks were present) subroutines. Several runs were made with randomly generated
problems of various dimensions and the results are summarized in Table 1. The number of
iterations refers to basis updates required. In terms of numerical accuracy, for the problems
we solved, all objective values corresponded to ten digits. All runs were performed on a
CDC 6600 with a 60-bit word.

TABLE 1

A summary of computational testing with two algorithms for Chebychev curve fitting. Five
problems were solved at each level and allfigures are the means of the results. All times are in

milliseconds on a CDC 6600

n m
[In each pair

of rows 5 10 15 20
1st row: Time

2nd row: Iterationis] B-Pt A-Kt B-P A-K B-P A-K B-P A-K

50 134 42 337 216 701 585 1098 1442
13 7 22 14 34 18 42 25

100 255 105 778 400 1639 1141 2571 2316
13 11 25 20 40 30 50 35

200 637 174 1928 634 4009 1818 6839 3743
16 11 32 21 49 35 67 46

200 689 165 1877 660 3434 1538 6035 3927
17 10 31 23 42 30 59 48

300 906 257 2779 891 5977 2563 10831 5369
15 11 30 23 49 40 70 54

350 1198 287 3806 1050 7896 2826 12661 5702
17 11 36 24 55 40 70 53

t B-P: Barrodale and Phillips (1975). A-K: Algorithm from this paper.

STRUCTURE

SUBROUTINE LFNORM (N, M, NDIM, MDIM, X, Y, BETA, Z, KY, IFA ULT)

Formal parameters
N Integer input: number of observations
M Integer input: number of independent variables

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

STATISTICAL ALGORITHMS 95

NDIM Integer input: first dimension of X and dimension of Y
MDIM Integer input: second dimension of X, and dimension of BETA
X Real array input: values of the independent variables such that each

(NDIM, MDIM) row corresponds to an observation
Y Real array (NDIM) input: values of the dependent variable
BETA Real array (MDIM) output: final estimates of the coefficients of the problem
Z Real output: the least maximum absolute deviation
KY Integer output: the iteration counter
IFA ULT Integer output: the failure indicator

= 0 normal termination
= 1 observation matrix of less than full rank

RESTRICTIONS
The local constants are ACU and BIG which have the values 10-8 and 105 respectively.

ACU is used to test for optimality. Also, if the absolute value of a number is smaller than
ACU, it will be treated as zero. BIG is used as an initial value when determining the minimum
ratio.

ACKNOWLEDGEMENT
This research was supported in part by a George Kozmetsky Fellowship Grant and NSF

Grant MCS77-00100.

REFERENCES
APPA, G. and SMITH, C. (1973). On L1 and Chebyshev estimation. J. Math. Programming, 5, 73-87.
ARMSTRONG, R. D. and KUNG, D. S. (1977). A dual method for discrete Chebychev curve fitting. Working

Paper 78-9, The University of Texas at Austin, 23 pp.
BARRODALE, L. and PHILLIPS, C. (1975). Solution of an overdetermined system of linear equations in the

Chebychev norm. ACM Transactions on Mathematical Software, 1, 264-270.
BARTELS, R. G. and GOLUB, G. H. (1969). The simplex method of linear programming using LU decompo-

sition. Commun. Ass. Comp. Mach., 12, 266-268.
HARTER, H. L. (1975). The method of least squares and some alternatives-Part III. Int. Statist. Rev., 43,

1-44.
STIEFEL, E. (1960). Note on Jordan elimination, linear programming and Tschebyscheff approximation.

Numer. Math., 2, 1-17.
(1959). Uber diskrete und lineare Tschebyscheff Approximationen. Numer. Math., 1, 1-28.

SUBROUTINE LFn;RM(N, M, NDIM, MDIM, X, Y, BETA, Z, KY, IFAULT)
C
C AUXRITIIM AS 135 APPL. STATIST. (1979) VOL.28, N0.1
C
C MIN-MAX ESTIMATES FOR A LINEAR MULTIPLE REGRESSION PRCBLEM
C

DIMENSION X(NDIM, MDIM), Y(NDIM), LU(20, 20), BETA(DIM)
DIMENSIOXN IIL(20), XRXF(20), XSXF(20), IBASE(20), INDEX(20)
REAL LU
INTEGER SSS, ER
LOGXICAL INTL

C
DATA ACU /1.OE-8/, BIG /l.OE15/

C
IFAULT 0 0
KY = 0
Z = 0.0
XM =4 - I-

C
C SET UP INJITIAL LU DECOMOITION

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

96 APPLIED STATISTICS
c

DO 10 I = 1, M
.10 INDEX(I> = I

INTL = TRUE.
EKEI = 1
CALL UPDATE(KEK, X, LU, IBASE, INDEX, INTL,

* N, M, NDIM, MD Ii, IFAULT)
IF (IFAULT NE, 0) RETURN
INTL = FALSE.
IROW = EKIE

C
C CALCULATE BETA VALUE
C

C - INDEX(1)
XI = IBASE(1)
BETA(0) = Y(K1) / U(K, 1)
DO 30 II = 2, M
K - INDEX(II)
K1 IBASE(II)
BETA(K) = Y(OC)
III = II - 1
DO 20 I = 1, IIl
KK = INDEX(I)
BETA(W = BETA(K) - U(KK, II) * BETA(KK)

20 CONTITUE
BETA(KX = BETA(K) / LU(K, II)

30 CONTINUE
DO 40 II = 1, Ml
K1 - M - II
K - INDEX(K1!
DO 40 I = 1, II
KK = M - I + 1
K2 = INDEX(KE).
BETA(K} = BETA(K) - W(K2, XI) * BETA(1(2)

40 CONTIlUE
C
C SEARCH FOR AND SET FIRST VIOLATED
C CONISTRAINT AS RTI! CONSTRAINT
C

50 IROW = IRON + 1
IF (IRMn .GT. N) RETURN
'DEV1 = 0.0
DO bo I = 1, M

6o DEVI = DEVI + X(IROWY, I) * BETA(Il
DEVI DEVI - Y(IROW)
IF (ABS(DEV1) .LT. ACU) GOTO 50
SIGR = SIGN(.10, DEVi)
MRR = IRNY

C
C ADJUST FOR THE RTIH CONSTRAINT
C

K = ItIDEX(1)
XRXF(1M X(RRR, IC)
DO 80 II 2, M
K = INDEX(II)
XRXF(IM - X(RRRf K)
II1 - II - 1
DO 70 I 1, IIl

70 XRXF(II N XWXF(II) - LU(K, I) * XRXF(I)
80 CONTINUE

K = INDEX(M)
XRXF(M) = XRXF(M) / LU(E, M)
HILO(M = SIGN(1.0, -SIGR * XRXF(M))
SUMXR = SIGR - HIW(M) * XRXF(M)
DO 100 II = 1, Ml
El - M - II
K INDEX01Cl)
DO] go I = 1, I I
K2 = M - I + 1
XR'FJ,(K1) = XREF(KE) - LU(, 2) * XRXF(K2)

90 CONTINUE
XR,XF(JCI) = XRXF(E) / LU(E, El)
HILDO(Kl = SIGN(l,0, -SIGR * XRXF(K1))
SUMXR = SUMXR -IL(Kl) * XRF(K1)

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

STATISTICAL ALGORITHMS 97

100 CONTINUEr
z = ABS(DEV1 / SUMXRI

C
C START OF MAIN ITERATIVE LOOP.
C SEARCI FOR TLE MOST VIOLATED STH CONSTRAINT
C

110 SSS = 0
DEVIAT = ACU

C
C CALCUlATE BETA VALUE
C

K - INDEX(l1
K1 = IBASEM(1
BETA(K) = (Y(K1I + Z * HI(1) / LU(K, 11
DO 130 II = 2, 1
K = INDEX(IIN
RI - IBASE(III
BETA(K0 = Y(K1) + Z * H1I(Ill
II1 - II - 1
DO] 120 I - 1, III
KK = INDEX(IN
BETA(KN = BETA(K IW(KEK II! BETA(K)

120 CONTIN1E
BETA(K) = BETACK) / LU(Ko II)

130 COTINUE
DO 140 II = 1, Ml
Rl - M - II
K INDEX (Kl)
DO 140 I = 1, II
KK = M - I + 1
K2 = INDEXIO(C
BETA(K) = BETA(K) - LU(12, El) * BETA(K2)

140 CONTINUE
C
C CALCUlATE RESIDUALS
C

DO i6o I = 1, N
YEST = 0.0
DT] 150 J = 1, M

150 YEST = YEST + X(I, JI * BETA(J)
DEVI = ABS(Y(I) - YEST) - Z
IF (DEVI .LE. DEVIAT) GaTo 160
YDEV = YEST Y(Il
DEVIAT = DEV1
SSS = I

i6o CONTINUE
C
C CHECK, IF AT OPTIMAL
C

IF (SSS SEQ. 0 RETURN
C
c SET UP INFORMATION ON TIE S-TH CONSTRAIN?
C

SIGS = SIGN(l.eO YDEV)
K = INJDEX (1)
XSXF(1l = X(SSS, I;
Do 180 II = 2, 1M
K = INDEX(II)
XSXF(II) -- ,(SSS, K1)
II1 _ II - 1
DO 170 1 1, ITI

170 XSXF(II) Xs"F(II) - LUCK, I) *' XSXF(I)
180 CONUiEin

K = INDEX(M)
XSXF(mt = XSXF(M) / LU(K, M)
SUmESS -SIGS + IILJ)(MI * XSXF(M)
DO 200 II = 1, Ml
K1 - M - II
K - INDEX(Kl)
DO 190 I t 1, II
K2 - H - I + 1
XSXF(Kl) _ X.XF(KIl) - LU(K, K2) * XSXF(K2)

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

98 APPLIED STATISTICS
190 CONTINUE

XSXF(K1) = XSXF(K1) / LU(K, Ki)
SUMXS = SUMXS + HILO(K1) * XSXF(K1)

200 CONTINUE
C
C SEARCH FOR MINIMUM RATIO
C

210 lOK = 0
RATIO = BIG
DO 220 I 1, M
IF (SIGS * SIGN(l.O, XSXF(I)) .NE. HILO(I) .OR.

* ABS(XSXF(I)) .LT. ACU) GOTO 220
TEST = ABS(XRXF(I) / XSXF(I))
IF (TEST .GE. RATIO) GOTO 220
RATIO = TEST
KKK = I

220 CONTINUE
C
C CHECK IF R-TH CONSTRAINT MOVES INTERIMO
C

IF (KKK .NE. 0) om 260
C
C PROCESS THE MOEMENT OF TEE R-TH CONSTRAINT
C

DELTA = ABS(DEVIAT / SUMES)
C
C CALCUIATE THE LARGEST TOLEALE DELTA
C

DIV = ABS(SUMXR) - 2.0
IF (DIV .LT. ACU) GOrO 240
SWING = 2.0 * Z / DIV
IF (SWING .GE. DELTA) GOTO 240

C
C SWITCH R AND S CONSTRAINT INDICATORS
C

SAVE = SUMXS
SUMXS = -SUMXR + SIGR + SIGR
SUMXR -SAVE
SAVE = SIGR
SIGR = SIGS
SIGS = -SAVE
DEVIAT = ABS(SUMXS * DELTA) - 2.0 * Z
Z = Z + DELTA
DO 230 I = 1, M
SAVE = XSXF(I)
XSXF(I) = XRXF(I)
XRXF(I) = SAVE

230 CONTINUE
I = RBR
RRR = SSS
SSS = I
GCYO 210

c
c REPLACE THE R-TH CONSTRAINT WITH THE S-TM CONSTRAINT
c

240 SIGR = SIGS
DO 250 I = 1, M

250 XRXF(I) = XSXF(I)
SUMXR = -SUMXS
z = z + DELTA
RRR = SSS
GOTO 110

C
C PROCESS THE MOVEMENT OF THE K-TH CONSTRAINT
C

2z60 DELTA = ABS(XRxF(KKK) * DEvIAT /
* (XRXF(KKK) * SUMXS. + XSXF(KKK) * SUMX1R))
TOP = -2.0,* Z * XRXF(KKK)
DIV = XRXF(KKK) * XRXF(KKK) + HIL0(K) * SUMXR
IF (SIGN(l.0, TOP) .NE. SIGN(l.0, DIV)) GOTO 270
IF.(ABS(DIV) .LT. ACU) GOrO 270
SWING = TOP / DIt

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

STATISTICAL ALGORITHMS 99

CHECK TO SEE IF THE K-TH CONSTRAINT SWINGS ACROSS
C

IF (SWING .GE, DELTA) GOTO 270
Z = Z + SWING
DEVIAT = DEVIAT - SWING *

* ABS(SUMXS + XSXF(KKK) * SUMR / XRXF(KKK))
SUMXR = SUMXR + 2.0 * HILO(KKK) * XRXF(KKK)
SUMXS = SUMXS - 2.0 * HIL(KKK) * XSXE(K)
HILO(KKK) = -HILO(KKK)
GOTM 210

C
C UPDATE XRXF AND THE LU OF THE CURRENT BASIS
C

270 HIM(K) = SIGS
SUMXR = SIGR
XRXF(KKK) = XRXF(KKK) / XSXF(KKK)
SUMXR = SUMXR - HILO() XRXF(KKK)
DO 280 I = 1, M
IF (I .EQ. KKK) GaO 280
XRXF(I) = XRXF(I) - XSXF(I) * XRXF(KKK)
SUM = SUMXR - HILU(I) * XRXF(I)

28o CONTINuE
IBASE(KKK) = SSS

C
C UPDATE LU DECOMPOSITION
C

CALL UPDATE(KKK, X, UT, IBASE, INDEX, INTL,
* N, M, NDIM, MDIM, IFAULT)
IF (IFAULT .NE. 0) RETURN
Z = Z + DELTA
KY = KY + 1
GaOT 110
RErURN
END

C
SUBROUTINE UPDATE(K, X, L, IBASE, INDEX, INTL,

* N, M, NDIM, MDIM, IFAULT)
C
C ALGORITHM AS 135.1 APPL. STATIST. (1979) VOL.28, No.1.

C UPDATE LU DECOMPOSITION MATRIX
C

DIMENSION X(NDIM, MDIM), L(20, 20), IBASE(20), INDEX(20)
REAL LU
LOGICAL INTL
DATA ACU /1.OE-8/

C
IRON = 0
DO 90 II = KKK, X
IF (INTL) GOtO 10
IROW = IBASE(II)
GOTFO 20

10 IRON = IRON + 1
IF (IROW . LE. N) GarO 20
IFAULT = 1
RETURN

20 DO 30 I = 1, N
30 W(I, II) X(IRON, I)

C
C SET UP REPRESENTATICN OF INCOMING ROW
C

IF (II .EQ. 1) GmoToO
III = II - 1
DO 50 ICOL = 1, II1
K = INDEX(ICOL)
SUBT = LU(K, II)
J = ICOL + 1
DO 40 I = J, M
X = INDEX(I)
JU(K, II) = WU(K, II). - SUBT * LU(K, ICOL)

40 CONTINUE
50 CONTINuE

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

100 APPLIED STATISTICS

C FIND WIMUM ENTRY
C

6o PIvcr = ,xC
KK = 0
DO 70 I = II, s
K = INDEX(I)
IF (ABS(LU(IC, IIl .LE. PIVOT) GOTO 70
PIVOT = ABS(W(K, IIM
KK I

70 CONTIlUE
IF (IE *EQ. 0) GOTO 10

C
c SWITCH ORDER
C

ISAVE = INDEX(ltK)
INDMEX(KiC) = INDEX('II
INDEX(II) = ISAVE

C
C PUT IN COUJimS or LU ONE AT A TIME
C

IF (INTIA IIBASE(II) IR
IF (II *EQ. MN GOTO 90
J = II + 1
ix) 80 I = it M
K = INDEXVI)
LU(E, II) = W(E, II / LU(ISAVE, II)

80 CONTINUE
90 CCNTINUE

EKE = IRCW
RETURN
END

Algorithm AS 136

A K-Means Clustering Algorithm

By J. A. HARTIGAN and M. A. WONG

Yale University, New Haven, Connecticut, U.S.A.

Keywords: K-MEANS CLUSTERING ALGORITHM; TRANSFER ALGORITHM

LANGUAGE

ISO Fortran

DESCRIPTION AND PURPOSE

The K-means clustering algorithm is described in detail by Hartigan (1975). An efficient
version of the algorithm is presented here.

The aim of the K-means algorithm is to divide M points in N dimensions into K clusters
so that the within-cluster sum of squares is minimized. It is not practical to require that the
solution has minimal sum of squares against all partitions, except when M, N are small and
K = 2. We seek instead "local" optima, solutions such that no movement of a point from one
cluster to another will reduce the within-cluster sum of squares.

METHOD

The algorithm requires as input a matrix of M points in N dimensions and a matrix of
K initial cluster centres in N dimensions. The number of points in cluster L is denoted by
NC(L). D(I, L) is the Euclidean distance between point I and cluster L. The general procedure
is to search for a K-partition with locally optimal within-cluster sum of squares by moving
points from one cluster to another.

This content downloaded from 128.235.251.160 on Fri, 27 Feb 2015 13:20:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 93
	p. 94
	p. 95
	p. 96
	p. 97
	p. 98
	p. 99
	p. 100

	Issue Table of Contents
	Applied Statistics, Vol. 28, No. 1 (1979) pp. 1-113+i-ii
	Front Matter [pp.]
	The Analysis of Transient Spectral Components with the Autoregressive Spectral Estimator [pp. 1-13]
	A Method for Mapping the Dense and Sparse Regions of a Forest Stand [pp. 14-19]
	Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm [pp. 20-28]
	The Computer Generation of Poisson Random Variables [pp. 29-35]
	Critical Values for a Sequential Test for Many Outliers [pp. 36-39]
	Least Squares Estimation for the Inverse Power Law for Accelerated Life Tests [pp. 40-46]
	A Method for the Statistical Analysis of a Changeable Independent Variable in a Batch Process [pp. 47-54]
	An Application of Discrete Kernel Methods to Forensic Odontology [pp. 55-61]
	Long-Tailed Distributions for Position Errors in Navigation [pp. 62-72]
	Miscellanea
	Corrections: The Height and Weight of Indian Children [pp. 72]

	Book Reviews
	Review of Tables of Random Times: Corrections [pp. 72]

	Miscellanea
	A Note on Multiple Time Scales in Life Testing [pp. 73-75]
	Barnard's Monte Carlo Tests: How Many Simulations? [pp. 75-77]

	Letter to the Editors [pp. 78]
	Book Reviews
	Review: untitled [pp. 79-83]
	Review: untitled [pp. 83-84]
	Review: untitled [pp. 84]
	Review: untitled [pp. 85]
	Review: untitled [pp. 85-86]
	Review: untitled [pp. 86-87]
	Review: untitled [pp. 87]
	Review: untitled [pp. 87-88]
	Review: untitled [pp. 88-89]
	Review: untitled [pp. 89]

	Statistical Algorithms
	Algorithm AS 134: The Generation of Beta Random Variables with one Parameter Greater than and One Parameter Less than 1 [pp. 90-93]
	Algorithm AS 135: Min-Max Estimates for a Linear Multiple Regression Problem [pp. 93-100]
	Algorithm AS 136: A K-Means Clustering Algorithm [pp. 100-108]
	Algorithm AS 137: Simulating Spatial Patterns: Dependent Samples from a Multivariate Density [pp. 109-112]
	Remark AS R29: Remarks on AS 110: L_p Norm Fit of a Straight Line [pp. 112-113]
	Remark AS R30: A Remark on Algorithm AS 76: An Integral Useful in Calculating Non-Central t and Bivariate Normal Probabilities [pp. 113]
	Correction: AS 76: An Integral Useful in Calculating Non-Central t and Bivariate Normal Probabilities [pp. 113]

	Back Matter [pp.]

